ATM Cash-out Attacks
Susan Langford, Ph.D.
Atalla Sr. Cryptographer
About HP Atalla Security Products

Trusted security partner in the Financial Services industry
Customers are the largest financial institutions and retailers worldwide
35 years experience in data protection, key management, cryptographic performance

250 Million card transactions protected daily by Atalla
Technology leader in Host Security Modules and banking standards
Leading HSM vendor serving Americas and APJ card payments markets
Banks, payments processors, retailers, oil and gas firms, and more...

Solutions the support highest government and industry standards
ATM, POS, and EFT payments applications and transactions (ANSI X9F, PCI-DSS, PCI-PTS-HSM)
Serve/protect/manage encryption keys for broad range of encryption devices/solutions
Cash-out attacks

Coordinated raids on ATMs using cloned cards & stolen PINs

2008 – RBS WorldPay - $9.5 Million
Cash withdrawn in less than 12 hours using 2100 ATMs worldwide - United States, Russia, Ukraine, Estonia, Italy, Hong Kong, Japan and Canada.

• Used just 44 cards – Payroll Debit
• Hackers manipulated the bank’s database to change balances, limits, and delete transaction data
• Watched the attack in real time from within WorldPay’s network.

2013 – $45 Million
December: $5 million, National Bank of Ras Al-Khaimah in the United Arab Emirates, known as RAKBANK, 4500 ATM transactions in 20 countries.
February: $40 million, Bank of Muscat in Oman, 24 countries.

• RAKBANK's processor is based in India, and Bank of Muscat's processor is based in the U.S
• In New York City: $2.4 million via 3,000 ATM withdrawals over the course of about 13 hours
Process of a cash-out attack

How banks are robbed in the 21st century

1. Steal debit card numbers. (These can be bought or snooped in bulk).
2. Infiltrate financial institution(s) to find matching PINs. (This \textbf{should} be hard.)
3. Hack bank payment apps to inflate/replenish account balances and remove transaction limits.
4. Clone the cards.
5. Send a bunch of runners out with cards/PINs in an orchestrated attack window.
6. Erase the logs.
The payments network

PIN is encrypted at point of entry and never in the clear outside of secure hardware.
Why worry about this type of attack?

Attackers are getting better at targeted intrusions

Attack is appealing because it’s cash

US lags in EMV implementation
- Cloning mag stripe cards is easier than cloning chips
- The world’s organized crime is being herded in US direction.
- EMV is not a “silver bullet”.

PINs over the Internet
- WorldPay attackers apparently finessed the HSM (the hard way).
- Internet allows compromise at user
- DDoS become distributed PIN cracking
- You may not know where a transaction comes from.
PINs

The good, the bad, and the ugly
The good: a PIN isn’t just a numeric password

If it is handled correctly

Security model can make 4 digits “good enough”

PIN only entered via secure PIN pad
- Bound with single account number
- Entry can’t be automated

PINs only processed and verified in secure hardware
- Never accessible to even root user of system
- Keys change as it passes through different systems, but still bound to same account
- Always a function of account + PIN + key
- Can’t do offline checking
- Can’t compare your PIN to other accounts

Velocity checking works if PIN only comes from known entry points.
The bad: encrypting PIN blocks

Lots of legacy issues

PIN blocks without the account number

Older PIN Pads and some smartcards

• No randomness: if your PIN = my PIN, can easily tell by monitoring line.
• With randomness: Easy for insider (malware) to run my known PIN against every account.
• Attacks get interesting when server supports changes in format.

Insider attack against even the “good” formats

ANSI PIN block (aka ISO-0) and ISO-3

• Combine account number and PIN via XOR
• Account number is an input to the function
• Putting in the wrong account number returns different errors depending on value of PIN digit.

There are implementation fixes but generally not enabled by default.
The bad (continued): verifying PINs

IBM 3624

Account # → Encrypt → Decimalize → Subtract

PIN
Offset
(stored & compared)
The ugly: distributed PIN search

Or, other things to do with a botnet...

Compromise a few thousand PCs

Each PC tries 2 different account numbers with 2 PINs

- Most user PINs are 4 digits
 - And those 4 digits are badly chosen
- Two wrong tries aren’t going to raise flags
- WorldPay attack only took 44 PINs.

Home banking PINs often limited to IP address

- Harder limitation to enforce for eCommerce
- If the attacker is on your network, user-side security doesn’t help.

<table>
<thead>
<tr>
<th>PIN</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>10.713%</td>
</tr>
<tr>
<td>1111</td>
<td>6.016%</td>
</tr>
<tr>
<td>0000</td>
<td>1.881%</td>
</tr>
<tr>
<td>1212</td>
<td>1.197%</td>
</tr>
<tr>
<td>7777</td>
<td>0.745%</td>
</tr>
<tr>
<td>1004</td>
<td>0.616%</td>
</tr>
<tr>
<td>2000</td>
<td>0.613%</td>
</tr>
<tr>
<td>4444</td>
<td>0.526%</td>
</tr>
</tbody>
</table>
Defenses
Dual-control/split knowledge

A compromised computer looks like an insider

So protect against insiders

Dual control: It takes at least two people to approve any security-relevant action
- Needs “enough” ease of use
- Remote management and policy setting

Split knowledge: No single person knows any key or other secret
- PINs should never be accessible by any employee
FIPS 140-2 validation
Why Atalla?

35+ years of experience in data protection, security and cryptographic performance.

- Physical & Logical Security
 - Tamper-reactive security
 - FIPS 140-2 level 3 + active zeroization
 - PCI-HSM validated
 - FIPS 140-2 level 3 smartcard based management
 - Industry leading key protection – AKB

- Ease of use
 - GUI-based Secure Configuration Assistant (SCA) makes setup easier and faster
 - Secure remote management and upgrades

- Flexibility with customer defined security policy and software upgrades

- Support backed by the power of HP.
HP Atalla Ax160 NSP products

Hardware Security Module (HSM)

Highly secure cryptographic processor

Functionality is aimed financial payments

- ATM/EFT/POS
- Credit cards and EMV
- Stored Value, loyalty cards and funds transfer

May be of use for other high-security applications

Hardware

Active zeroization

- State-of-the-art, 2U rack-mountable form factor
- Locking bezel with two Medeco locks
- Auto-sensing 10/100/1000 Base-T Ethernet TCP/IP
- Dual power supply
Atalla HSMs

Hardware appliance

A8160
- Entry level hardware
- 66 PIN translates/second

A9160
- Mid Range
- 200 PIN translates/second

A10160
- High End
- 1080 PIN translates/second

+ Firmware image

Basic Software
- Included in module price
- Different key management techniques
 - AKB – more secure: A1.30
 - Variant – legacy key management: V1.30

Premium Software
- Additional charge, sold separately
- More Features
 - AKB – A2.10
 - Variant – V2.10
- Uses newer, stronger smartcards
“Why did I rob banks? Because I enjoyed it. I loved it …

Go where the money is...and go there often.”

Willie Sutton, bank robber
Thank you
Security for the new reality